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We study aggregation as a mechanism for the creation of complex networks. In this evolution process
vertices merge together, which increases a number of highly connected hubs. We study a range of complex
network architectures produced by the aggregation. Fat-tailedsin particular, scale-freed distributions of con-
nections are obtained for both networks with a finite number of vertices and growing networks. We observe a
strong variation of a network structure with growing density of connections and find the phase transition of the
condensation of edges. Finally, we demonstrate the importance of structural correlations in these networks.
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I. INTRODUCTION

Fat-tailed distributions of connections characterize the
complex architectures of many real-world networksf1–4g.
Several mechanisms may be accounted for this form of de-
gree distributions of networks.sDegree is the total number of
connections of a vertex.d The most popular concepts imply
self-organizationf5–7g. The self-organization mechanism is
responsible for fat-tailed distributions in a wide circle of
evolving systemsssee, e.g., Refs.f8,9gd, and not only in net-
works.

Usually, a very particular preferential attachment version
of the self-organization mechanism is discussed, so that
highly connected vertices preferentially attract new connec-
tions f5–7g, but there are other possibilities. In this paper, we
consider agglomeration as a competing possibility. It is
known that aggregation processes effectively generate
power-law distributionsssee, e.g., Ref.f10g for an example;
see also the recent paper Ref.f11gd. In networks, the corre-
sponding process is the merging of vertices. By this mecha-
nism, vertices accumulate their connectionssagglomeration
of edgesd. This increases a number of highly connected hubs
and so gives a chance to arrive at a fat-tailed degree distri-
bution.

Evidently, the merging of vertices should take place in
cellular networkssmerging proteinsd as well as in many other
real-world networks. For example, in various networks of
economic relations, merging and splitting of enterprises are
basic elements of the evolution. The same is valid for net-
works of software components, electronic circuits, networks
of relations between social groups, organizations, institu-
tions, and parties, networks of subjects, networks of notions,
etc. Simple evolving networks with merging vertices have
recently been simulatedf12g, and the generation of fat-tailed
degree distributions has been successfully demonstrated.
sFor a similar process in bipartite graphs, see Ref.f13g.d

In the present paper we provide a comprehensive descrip-
tion of the process of the creation of complex network archi-

tectures by the merge of vertices. It is impossible to obtain a
uniform picture for all networks of this type. So we describe
a set of typical behaviors by considering a line of basic net-
work models, which can be studied analytically. These mod-
els may be generalized in a natural way to include clustering
and the condensation of clustering. Many other variations are
also possible.

All the models that we study in this paper generate fat-
tailed degree distributions. We consider both nonequilibrium
networks with a fixed number of vertices and networks

where this number grows. We use the mean degreek̄ of a
network as a relevant parameter. Then for scale-free net-
works, where a degree distribution is a power law with ex-

ponentg, the variation of network architectures withk̄ is

essentially characterized by thegsk̄d dependence.
In most of the networks in this paper, the evolution is due

to two parallel processes:sid the merging of vertices andsii d
random attachment of new vertices. However, we also dis-
cuss networks, where the second channel of the evolution is
splitting sfragmentationd of vertices. The range of scenarios
is wide, but in most of them we find a phase with the con-
densate of edgessin other words, gelationd. Above some

critical valuek̄c of the mean degree, a finite fraction of edges
is attached to a vanishing fraction of vertices or to a single
vertex. This condensation, unlike the situation described in
Ref. f14g, occurs in the homogeneous networks. In the “nor-
mal phase,” a degree distribution is of a power-law form
Pskd~k−g. Moreover, we observe that, rather unexpectedly,
even in the condensation phase, normal vertices have a scale-
free degree distribution.

The resulting picture may be complicated by the presence
of correlations, which is typical for nonequilibrium net-
works. We demonstrate the importance of degree-degree cor-
relations in the most succinct of these network models. The
paper is organized as is follows. In Sec. II, we describe the
models and present in detail our results for each of them. The
complete final information can be obtained from this section.
In Sec. III we present the details of our analytical calcula-
tions.
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II. MODELS AND RESULTS

In this section we describe basic models of networks
evolving due to aggregation processes and present our re-
sults. For sake of brevity we consider only undirected
networks—i.e., networks with undirected edges.

A. Network O

This is the simplest model. The evolution starts from a
given configuration of vertices and connecting edges. Loops
of length one are allowed. At each time stepssee Fig. 1d, the
following occurs:

s1d qù1 new bare vertices are added to the network.
s2d Two randomly chosen vertices merge.

Obviously, the final state of the network is a set of bare
vertices plus a single vertex with all the edgessactually,
loops of length 1d attached. This is what we call the conden-
sate of edges.

B. Network A

The slarged total number of vertices of this network,N,
does not change during the evolution. Initially, there is an
arbitrary configuration ofN vertices connected by some
number of links. At each time stepssee Fig. 2d, the following
occurs:

s1d A new vertex is added to the network. This vertex is
attached to a randomly chosen vertex.

s2d Two randomly chosen vertices merge.

So the result of the merging of vertices of degreesk8 and
k9 is a vertex of degreek=k8+k9. The total degree of the
network linearly grows,Kstd=Kst=0d+2t, as well as its
mean degree. The network becomes more and more dense
with time.

The resulting degree distributionsactually, its asymptot-
icsd is of a power-law form with exponent equal to 3/2:

Pskd , k−3/2. s1d

The main part of the distribution is stationary, but its low-
degree part and a cutoff in the high-degree range change with

time. This ensures the growth of the mean degree with time.
Any condensation of edges is absent.

Note that we assume that this network is sparse. In prin-
ciple, we allow multiple connections and 1-loopss loops of
length 1d. However, we believe that in the sparse network
regime, they are not important if we are not interested in the
position of the cutoff of the degree distribution.

This network was simulated earlierf12g. Our analytical
results confirm the observations in Ref.f12g; see also Ref.
f11g.

C. Network B

This is a growing version of modelA. At each time step
ssee Fig. 3d, the following occurs:

s1d q.1 new vertices are added to the network. Each of
these vertices is attached tom randomly chosen vertices by
m edges.

s2d Two randomly chosen vertices merge.

The total number of vertices now grows:Nstd=Nst=0d
+sq−1dt. The total degree isKstd=Kst=0d+2qmt. So the

average degree approaches the finite valuek̄=2qm/ sq−1d.
The condensation of edges is absent in this model. Unlike

model A, the stationary degree distribution of this growing
network is a rapidly decreasing function. If, however, the
rate of the growth is low,q−1!1, then the power-law de-
pendences1d is realized in the range of degrees below a
size-independent cutoffk!m/ sq−1d2.

D. Network C

In this growing network, at each time stepssee Fig. 4d, the
following occurs:

s1d q.1 new vertices are added to the network. Each of
these vertices is attached tom randomly chosen vertices by
m edges.

s2d Simultaneously, a randomly chosen vertex merges
with its randomly chosen neighbor, and the connecting edge
disappears.

FIG. 1. Processes creating networkO. The labelsr indicate that
merging vertices are selected at random. “1” indicates an added
vertex.qù1 is a relative rate of the addition process.

FIG. 2. Processes creating networkA.

FIG. 3. Processes creating networkB. Here,m=2; i.e., each new
vertex has two connections.

FIG. 4. Processes creating networkC. m=2.
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Rule s2d means the preferential choice: the second vertex
in the network is chosen with probability proportional to its
degree. The number of vertices and the total degree grow as
Nstd=Nst=0d+sq−1dt andKstd=Kst=0d+2sqm−1dt, respec-
tively. So the mean degree approaches the value

k̄ > 2
qm− 1

q − 1
. 2m. s2d

It turns out that if the network is sufficiently dense,
namely, if

k̄ . k̄c = 2ms1 +Î1 − 1/md, s3d

then a finite fraction of edges is condensed on a single vertex
sor, maybe, on a few verticesd. This takes place when the rate
of the grows is low:

q , qc = 1 +Î1 − 1/m. s4d

The fraction of edges in the condensate,

M =
k̄2 − 4k̄m+ 4m

k̄sk̄ − 2md
=

2qm− q2m− 1

qm− 1
, s5d

behaves asM ~ sk̄− k̄cd~ sqc−qd near the condensation point
ssee Fig. 5d. One can see that all the edges are in the con-

densate in the limit ofk̄→`. sNote, however, that we con-
sider a sparse network.d

One can easily understand this condensation phenom-
enon. For the evolution of the number of edges in the con-
densate, Khstd=2sqm−1dMt—that is, the “macroscopic”
number of edges attached to the hub—one can immediately
write the following equation:

dKh

dt
=

Kh

K
F K − Kh

sq − 1dt
− 2G . s6d

Here,Kstd is the total degree of the network, and the second
factor on the right-hand side of the equation is simply the

mean degreek̄n of “normal” vertices si.e., the hub is ex-
cludedd minus 2. Indeed, according to rules2d of the model,
the probability that the hub will be chosen for the merging is
Kh/K. Each act of merging, on average, increases the number

of connections of the hub byk̄n−2, which explains the form
of Eq. s6d. Consequently,

2sqm− 1dM = MF2sqm− 1d − 2sqm− 1dM
q − 1

− 2G . s7d

One can see that this equation has a nonzero solutionM
fexactly of the forms5dg only if the growth rate parameterq
is less than the critical valueqc given by expressions4d. Note
that similar equations may be written for networks with split-
ting verticesssee belowd.

“Normal vertices” si.e., with “microscopic” numbers of
connectionsd have stationary power-law degree distributions
sasymptoticsd both in the normal and in the condensed
phases. Theg exponent of the degree distributionPskd
,k−g is

g = 2 +
4k̄m− k̄2 − 4m

sk̄ − 2dsk̄ − 2md
= 2 +

mq2 − 2qm+ 1

qsm− 1d
. 2 s8d

in the phase without condensatesk̄, k̄c, i.e., q.qcd and

g = 2 +
k̄2 + 4m− 4k̄m

2k̄sm− 1d
= 2 +

2qm− mq2 − 1

smq− 1dsq − 1d
. 2 s9d

in the condensation phase, wherek̄. k̄c sq,qcd. Figure 6
shows how the exponent of the degree distribution varies
with the mean degree. Note that in both phases, near the

condensation point,g−2~ uk̄− k̄cu~ uq−qcu.
At the critical point, the degree distribution has the form

Pskd ,
1

k2 ln2 k
. s10d

Thus, this network is scale free both is the normal and in
the condensation phases. The power-law form of the degree
distribution in the condensation phase is rather unexpected.

Let us explain this remark in more detail. A close analogy
of the problem under consideration is the emergence of the
giant connected component in a growing network, where a
phase transition with the Berezinskii-Kosterlitz-Thouless sin-
gularity takes placef15–18g. In that case, the evolution equa-
tion for the size distribution of connected components is very
similar to the evolution equation for the degree distribution
in our casessee the next sectiond. In this analogy, the giant

FIG. 5. The fractionM of condensed edges in networkC as a

function of thek̄/ s2md sad and of the growth rateq sbd. Curves 1, 2,
and 3 correspond tom=3, 6, and`, respectively.
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connected component is analogous to the condensate of
edges attached to a vertex, and the size distribution of finite
connected components is analogous to the degree distribu-
tion in our case. The point is that the size distribution of
connected components was found to be rapidly decreasing in
the phase with the giant componentssee Ref.f16gd, while in
contrast, in the present situation, the degree distribution is
scale free in the phase with the condensate.

Referencef12g was mainly devoted to the simulation of
the “static” version of quite similar networks without mul-
tiple connections and loops of length 1,N=const, with a
growing sbut still relatively lowd number of connections.
Scale-free degree distributions with exponents exceeding 2,
without any condensation, were reported. We do not consider
precisely this situation here, since we focus on stationary
degree distributions. These take place in the growing net-
work.

E. Network D

At each time stepssee Fig. 7d, the following occurs:

s1d q.1 new vertices are added to the network. Each of
these vertices is attached tom randomly chosen vertices by
m edges.

s2d Simultaneously, the end vertices of a randomly chosen
edge merge together, and this edge disappears.

At first sight, this model is close to modelC. The numbers
of vertices and connections grow in the same way, and the
mean degree is the same, Eq.s2d. The only difference is the
way in which the merging vertices are chosen. One can treat
this merging process as the transformation of random edges
with their end vertices into single vertices.

In fact, there is an essential difference since now the
choice of vertices, in principle, depends on correlations be-
tween the degrees of the nearest-neighbor vertices in the net-
work. Let us compare modelsC and D once again:sid The
evolution of modelC produces degree-degree correlations
but is not governed directly by them.sii d The evolution of
model D depends on the degree-degree correlations and, in
its turn, produces these correlations.

Strict calculations taking into account degree-degree cor-
relations should be rather cumbersome. So we applied a sim-
plifying ansatz: we assumed that correlations may be ne-
glected.

It turns out that with this assumption, equations for the
degree distribution have a reasonable solution only if the
mean degree of the network is below some value:

k̄ , k̄c = 2.204m− 0.1115 +Os1/md, s11d

or, equivalently,q.qc>10.815−4.446/m. In this region,
our calculations provide a power-law degree distribution.
Theg exponent of this distribution approaches infinity at the

minimal possible mean degree 2m si.e., q→`d and neark̄c
behaves as

g − 3 , Îk̄c − k̄ , Îq − qc s12d

ssee Fig. 8d. This is in sharp contrast to the behaviorgsk̄d
near the critical point of networkC ssee Fig. 6d. Note the

value 3 of exponentg at k= k̄c.

Above k̄c, with our assumption that the correlations are
absent, the only solution was found to be pathological. This
proves the importance of the correlations in this network,
which may be especially important in the condensation
phase.

For studying these degree-degree correlations, we resort
to numerical simulations following the rules of modelD. The
degree distributions of the resulting networks are shown in
Fig. 9. Power-law-like degree distributions were observed
both in the condensation phase and in the normal one. Fitting
has given values of theg exponent slightly above 3 at the
studied values of the parameterq. We obtained the depen-
dence of the mean degree of the nearest neighbors of a vertex

on the degreek of this vertex,k̄nnskd. Of particular note here

is thatk̄nnskd has to be computed with care: loops of length 1
are not to be considered for the vertex whose nearest neigh-
bors are under study. However, we take into account the
nearest neighbors with 1-loops. This may be especially im-
portant in the condensation phase. The obtained dependences

k̄nnskd are shown in Fig. 10. The main conclusions are as
follows:

s1d The network is correlated, and the degree-degree cor-
relations are strong; the correlations are of assortative type.

FIG. 6. Theg exponent of the degree distribution of networkC

as a function ofk̄/ s2md and q. Curves 1, 2, and 3 correspond to

m=3, 6, and̀ , respectively. Note that the dependences onk̄/ s2md
andq are identical, but the ranges of the normal and condensation
phases are inversedfsee expressionss8d ands9dg. The condensation

takes place for k̄/ s2md.kc/ s2md=1+Î1−1/m and q,qc=1
+Î1−1/m.

FIG. 7. Processes creating networkD. m=2.
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s2d The correlations are present both in the phase with the
condensate and without it. Figure 10 demonstrates a nonmo-

notonous dependence ofk̄nnskd on q.
s3d The condensation phase transition takes place at

higher values of the mean degree thank̄c given by Eq.s11d.

s4d The observed values of theg exponent of the degree
distribution are bounded from below.

The assortative type of degree-degree correlations which
we observe is not surprising. Indeed, if we remove the merg-
ing of vertices from this evolution process, we obtain a
growing network with random attachment of new vertices,
which has assortative degree-degree correlations; see Refs.
f2,19,20g.

F. Splitting vertices

Instead of the process of the random attachment of new
vertices in modelsA–C, one can introduce another channel
of evolution—splitting sfragmentationd of vertices. In this
paper we only touch upon two possibilitiesssee Fig. 11d:

s1d A randomly chosen vertex of degreek splits into a pair
of unconnected vertices of degreesk8+k9=k in such a way
that all possible resulting configurations are realized with
equal probabilities.

s2d A randomly chosen vertex of degreek splits into a pair
of vertices of degreesk8+k9=k+2, connected by an edge.
Again, we assume that all possible resulting configurations
occur with equal probabilities.

The number of these splittings per time step, in principle,
may not be equal to 1.

III. DERIVATIONS

In this section we describe details of our calculations. We
use an analytical technique similar to that for aggregation
processes in more traditional systemsf21,22g sfor various
aspects of the aggregation processes, see, e.g., Refs.
f10,23–25gd.

A. Network A

The evolution equation for the average numberN̄sk,td of
vertices of degreek in the networkA at time t has the fol-
lowing form:

FIG. 8. Theg exponent of the degree distribution of networkD

as a function ofk̄/ s2md sad andq sbd. Curves 1, 2, and 3 correspond
to m=3, 6, and`, respectively. The solid lines are obtained by
neglecting degree-degree correlations. The dashed lines qualita-
tively show the dependences that we suggest are valid for the cor-
related network. In the condensation phase, the exponentg does not

change withk̄ andq, and is close to 3.

FIG. 9. The average number of
vertices of degreek in simulated
network D for q=5,7,12 andm

=3. Pskd=N̄skd /N. The valuesq
=5 andq=7 imply the presence of
the condensate. The simulated
networks contain up to 104

vertices.
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N̄sk,t + 1d = N̄sk,td + dk,1 +
1

N
N̄sk − 1,td −

1

N
N̄sk,td

+ S 1

N
D2

o
k8+k9=k

N̄sk8,tdN̄sk9,td −
2

N
N̄sk,td.

s13d

Here the average is over the statistical ensemble.sA random
network is a statistical ensemble: a set of configurations with
their statistical weights.d Three first terms on the right-hand
side of Eq.s13d describe the process of the addition of a new
vertex and the attachment to a randomly chosen vertex. The
two last terms describe the merging of a pair of randomly
selected vertices. The factor of 2 in the last term is due to the
fact that two vertices merge together.

Note that we assume that our networks are large. So a
merging pair almost surely has no common nearest neigh-
bors, and we can ignore the emergence of multiple connec-
tions during merging if we do not interested in the cutoff
region of the degree distribution.

The total number of vertices in the network,N, is con-
stant, so the evolution equation for the degree distribution

Psk,td=N̄sk,td /N has the form

]Psk,td
]t

= dk,1 + Psk − 1,td − Psk,td

+ o
k8+k9=k

Psk8,tdPsk9,td − 2Psk,td s14d

sas is usual, asymptotically long times are consideredd. As-
suming a stationary form of the degree distributionsexcept
of a time-dependent cutoff and of, maybe, a low-degree part
of the distributiond, we arrive at a stationary equation. TheZ
transform of the degree distributionsa generating functiond is

nszd ; o
k=0

zkPskd. s15d

So in aZ-transformed form, we have

0 = n2szd + sz− 3dnszd + z. s16d

The solution of this equation is

nszd =
1

2
f3 − z− Îs9 − zds1 − zdg. s17d

This givesns1d=1, as it should be withokPskd=1. This root
of the equation is chosen since it must be 0,n8s0d=Ps1d
,1. The equation givesn8s0d=Ps1d=1/3.

Nearz=1,

nszd > sanalytical termsd + s1 − zd3/2−1. s18d

This corresponds to the degree distributionPskd,k−3/2, Eq.
s1d, since the form of aZ transform nearz=1 and the asymp-
totics of its original are related to each other in the following
way:

nsz, 1d > sanalytical termsd + s1 − zdg−1 ↔ Psk @ 1d , k−g,

s19d

if g is noninteger. The results18d is rather typical not only
for aggregation processes but also for general nonequilib-

FIG. 10. The dependence of
the mean degree of the nearest
neighbors of a vertex on the de-

gree k of this vertex, k̄nnskd, in
simulated network D for q
=5,7,12 andm=3. The simulated
networks contain up to 104

vertices.

FIG. 11. Splitting processessexamplesd: sad splitting of a ran-
domly chosen vertex into a pair of unconnected vertices andsbd
splitting of a random vertex into a pair of connected vertices. In the
simplest situation, each of possible resulting configurations occurs
with equal probability.
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rium networks, where the mean degree linearly grows with
time ssee the discussion in Ref.f2gd.

Initially, we have assumed that the resulting degree distri-
bution is stationary. In principle, one can make a more gen-
eral assumption—e.g., for brevity,Psk,td= tafskd, wherea is
some exponent andfskd is an arbitrary function ofk. After
the substitution of this form into Eq.s14d andZ transforma-
tion, we find that the solutionnsz,td depends only onz— i.e.,
indeed stationary.

B. Network B

The evolution equation for the mean number of vertices
of degreek in networkB is

N̄sk,t + 1d = N̄sk,td + qdk,m +
qm

Nstd
N̄sk − 1,td −

qm

Nstd
N̄sk,td

+
1

N2std o
k8+k9=k

N̄sk8,tdN̄sk9,td −
2

Nstd
N̄sk,td.

s20d

Here, the number of vertices,Nstd>sq−1dt. The evolution

equation for the degree distributionPsk,td> N̄sk,td / fsq
−1dtg is

sq − 1dft]tPsk,td + Psk,tdg = qdk,m + qmPsk − 1,td − qmPsk,td

+ o
k8+k9=k

Psk8,tdPsk9,td

− 2Psk,td. s21d

Assuming a stationary degree distribution, in aZ transformed
form, this is

0 = qzm + n2szd + qmznszd − fqsm+ 1d + 1gnszd s22d

fcompare with Eq.s16d for q=1g. The solution of Eq.s22d is
analytical atz=1, so that the degree distribution is a rapidly
decreasing function. Suppose, however, that the rateq is
close to 1. Then deviations from nonanalytical behaviors18d
of nszd are observed only in the range 1−z& sq−1d2/m. This
results in a size-independent cutoffkcut,m/ sq−1d2 of the
power-law dependencePskd,k−3/2.

C. Network C

The evolution equation for the mean number of vertices
of degreek in this network is of the form

N̄sk,t + 1d = N̄sk,td + qdk,m +
qm

Nstd
N̄sk − 1,td −

qm

Nstd
N̄sk,td

+
1

N2stdk̄
o

k8+k9=k+2

N̄sk8,tdk9N̄sk9,td

−
1

Nstd
N̄sk,td −

k

Nstdk̄
N̄sk,td. s23d

Note that while deriving this equation, we did not assume the
absence of correlations between the nearest-neighbor verti-

ces. Rules2d of the modelssee Sec. II Dd ensures that the
second vertex for mergingsa random nearest neighbor of a
random vertexd is chosen with the probability proportional to
the degree of this vertex. This is true irrespective of the
presence of correlations in the network.

For the stationary degree distribution, in aZ-transformed
form, we have

0 = qzm +
1

z2k̄
nszdzn8szd −

1

k̄
zn8szd + qmznszd − qsm+ 1dnszd.

s24d

(Note that the Z transform of the convolution with
ok8+k9=k+2Psk8dk9Psk9d is

1

z2hnszdzn8szd − Ps0d0Ps0d − zfPs0d1Ps1d + Ps1d0Ps0dgj.

We havePs0d=0, so that this expression simplifies.) Recall
that

q =
k̄ − 2

k̄ − 2m
. 1. s25d

Equations24d is the Abel equation of the second kind. In a
canonical form it looks as

fz2 − nszdgn8szd = k̄qhzm+1 + fmz2 − sm+ 1dzgnszdj. s26d

For the detailed analysis of a very similar equation for the
size distribution of finite connected components in growing
networks, see Ref.f16g. Note, however, that in general terms,
Eq. s26d has a different solution than that in Ref.f16g.

If Psk=0d=0, Eq.s26d implies

nsz, 0d >
k̄sk̄ − 2d

k̄2sm+ 1d − k̄s2m+ 1d − 2m2
zm. s27d

For obtaining a large-k asymptotics ofPskd, one must find
the solutionnszd of Eq. s26d with the initial conditions27d
nearz=0. One can check that this solution arrives at 1 atz
=1: ns1d=1.

The linearization of Eq.s26d near z=1 shows thatnszd
linearly approachesz=1, with a derivativen8s1d, which sat-
isfies the equation

f− 2 +n8s1dgn8s1d =
k̄sk̄ − 2d

k̄ − 2m
f− 2m+ n8s1dg. s28d

The meaning ofn8s1d is the mean degree of a vertex with
degreek=osNd—that is, the mean degree of a “normal” ver-
tex. The solution of this square equation is

n8s1d =
k̄2 − 4m− u− k̄2 + 4k̄m− 4mu

2sk̄ − 2md
. s29d

That is, there is a pointk̄c sand the corresponding valueqcd,
satisfying the equation
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k̄c
2 − 4k̄cm+ 4m= 0, s30d

where the expression forn8s1d changes its form.k̄c and qc

are given by Eqs.s3d and s4d, respectively.

At k̄, k̄c, the slopen8s1d equals the mean degree of the

network, k̄. That is, all the vertices of the network are “nor-

mal.” Above k̄c si.e., at q,qcd, n8s1d=2qm=2msk̄−2d / sk̄
−2md, k̄. This means that a fractionM =fk̄−n8s1dg / k̄ fsee
expressions5dg is in the condensed state. The variation of the

solution of Eq.s26d with k̄ is shown schematically in Fig. 12.
The large-degree asymptotic behavior of the degree dis-

tribution of “normal vertices” is obtained by analyzing the
form of the solution of Eq.s26d nearz=1. We pass to new
variablesz=1−j, nszd=1−n8s1dj+vsjd in Eq. s26d. The in-

spection of the resulting equation shows that atk̄Þ k̄c, the
contribution vsjd is a power-law function at smallj, vsjd
~ja, where exponenta is greater than 1. The substitution of
this form into the equation allows us to obtaina. Using the
correspondences19d results in the formulass8d and s9d for
the g exponent of the degree distribution in the normal and
condensed phases, respectivelyssee Fig. 6d.

In the critical point,k̄= k̄c, the solution of the equation for
vsjd has a more complex form with an additional logarithmic
factorsfor more details, see Ref.f16gd. The resulting solution
nsz,1d is

nszd > 1 − k̄cs1 − zd + const3
1 − z

lnfconst3 s1 − zdg
.

s31d

The asymptotics of the original of thisZ transform is

Pskd =R
c

dz

2pi
z−k−1Pskd

~ R
c

dz

2pi

1 − z

lnfconst3 s1 − zdg
z−k−1

> R
c8

ds

2pi

s

ln s
esk

=E
0

` ds

2pi
sS 1

lns
−

1

ln s+ 2pi
De−sk

> E
0

` ds

2pi
s

2pi

ln2 s
e−sk,

1

k2 ln2 k
. s32d

Here the contourc is around 0, within the unit circle. The
contourc is deformed to the contourc8, which comes from
−` to +0 along the cut of ln and then returns to −` by the
other shore of the cut. This deformation is made to ensure the
decrease of the exponent. Thus, we have arrived at the de-
gree distributions10d at the critical point.

One can show that atk̄Þ k̄c, in large networks, the degree
distribution has two regions.sid The power-law dependence
with exponentss8d ands9d is realized in the range of degrees

ln k.2sk̄2−4k̄+4md / uk̄2−4k̄m+4mu. sii d At smaller degrees,
the critical dependences10d is present.

D. Network D

Merging vertices in this model are the ends of randomly
selected edges. In this case, for the strict description of the
network evolution one has to solve an equation for a joint
distribution Psk8 ,k9d of the degrees of the nearest neighbor
vertices. This is an essentially more hard problem than the

analysis of Eqs.s14d, s21d, and s24d for Pskd or N̄skd in
previous sections. Instead of making these cumbersome cal-
culations, we ignore the possibility of the degree-degree cor-
relations and check whether this ansatz leads to reasonable
results or not. This simplification allows us to consider a
more simple evolution equation.

Assuming the absence of correlations between degrees of
the nearest neighbors of networkD results in the following
rate equation:

N̄sk,t + 1d = N̄sk,td + qdk,m +
qm

Nstd
N̄sk − 1,td −

qm

Nstd
N̄sk,td

+
1

N2stdk̄2
o

k8+k9=k+2

k8N̄sk8,tdk9N̄sk9,td

− 2
k

Nstdk̄
N̄sk,td. s33d

For brevity, we consider only the casem.2 ssome of the
resulting formulas may be different in the cases ofm=1,2d.
So for a stationary degree distribution, we have, in a
Z-transformed form,

0 = qzm +
1

z2k̄2
fzn8szdg2 −

2

k̄
zn8szd + qmznszd

− fqsm+ 1d − 1gnszd. s34d

This is a nonlinear differential equation of the first order. It
crucially differs from the corresponding Eq.s24d for the

FIG. 12. The schematic view of the solution of Eq.s26d in the
normals1d and condensations2d phases. The dashed lines show the

corresponding 1−k̄s1−zd dependences. In the condensation phase,

the slope of the solution atz=1 is lower thank̄.
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modelC and provides a different set of behaviors.
Near z=0, the solution of Eq.s34d is of the following

form:

nsz, 0d >
k̄sk̄ − 2d

2k̄sm− 1d − 4m2 + k̄2m
zm. s35d

This asymptotics is used as a boundary condition for Eq.
s34d.

For a numerical analysis, the following form of Eq.s34d is
more convenient:

n8szd = kz− kHz2 −
1

k̄ − 2m
hk̄2sk̄ − 2dzm

+ fsk̄ − 2dmz− k̄ + 2mgnszdjJ1/2

. s36d

Note that out of the two solutions of Eq.s34d only the one
with a negative sign is reasonable. One can check that at the

boundaryz=1, if ns1d=1, then Eq.s34d givesn8s1d= k̄ and,

vice versa, ifn8s1d= k̄, then Eq.s34d gives ns1d=1. On the
other hand, the numerical solution of Eq.s36d shows that the

solution withns1d=1 exists only at sufficiently lowk̄. Above

some valuek̄c, the solutions of Eq.s34d or Eq. s36d turn out
to be greater than 1 at somez: ns1d.1 ssee Fig. 13, and
compare with Fig. 12d. But this is impossible, since surely
okPskd=1. This contradiction indicates that our assumption

does not hold at least fork̄. k̄c.
Let us study the analytical structure of the solutionnszd, z

near 1, fork̄, k̄c. As in Sec. III C, introducing the new vari-

ablesz=1−j andnszd=1−k̄j+vsjd, we pass to an equation
for vsjd. It turns out, however, that unlike Sec. III C, this
equation has no solutionvsjd,ja with exponent 1,a,2.
So we have to search for the solution in the analytical form
vsjd=Cj2. Substituting this form into the equation gives

C =
k̄sk̄ + k̄m− 4md

4sk̄ − 2md

3F1 −Î1 − 2
sk̄ − 2dsk̄ − 2mdms2k̄ + m− 1d

sk̄ + k̄m− 4md2
G .

s37d

sOne can check that only the sign “minus” at the square root
leads to reasonable final values of the exponent of the degree

distribution.d C is real only if k̄ø k̄c, where k̄c is the point

where the square root in Eq.s37d is zero. k̄c is exactly the
point above which the solutionnszd is not reasonablefi.e.,

wherens1d.1g. The resulting expression fork̄c is cumber-
some but form@1 we have

k̄c >
7 +Î113

8
m−

3 − 11/Î113

7 +Î113
, s38d

which leads to formulas11d.
So if k̄ø k̄c, we can substitutevsjd=Cj2+wsjd into the

equation forvsjd. An inspection of the resulting equation for
wsjd shows thatwsjd>Djb, where exponentb.2. One can
easily findb,

b =
k̄2sm− 1d

sk̄ − 2mds2C − k̄d
, s39d

with C given by Eq.s37d, and by using the correspondence
rule s19d we readily obtain the exponent of the degree distri-
bution:

g = 3

+

2Î1 − 2
sk̄ − 2dsk̄ − 2mdms2k̄ + m− 1d

sk̄ + k̄m− 4md2

k̄sm− 1d

k̄ + k̄m− 4m
−Î1 − 2

sk̄ − 2dsk̄ − 2mdms2k̄ + m− 1d

sk̄ + k̄m− 4md2

.

s40d

This gsk̄d dependence is shown in Fig. 8.
The analytical results for networkD were obtained in the

framework of the simplifying ansatz: we ignored degree-
degree correlations. The simulation of this network has
shown that the correlations are significantssee Sec. II Ed and
that our analytical predictions for the normal phase must be
corrected. Furthermore, the simulations have allowed us to
describe the structure of the network in the condensation
phase.

E. Splitting vertices

Here we only show the contributions due to splitting pro-
cesses to evolution equations for the degree distribution.
Splitting processs1d of Sec. II F generates with equal prob-
abilities all possible configurations of two unconnected ver-
ticesfsee Fig. 11sadg. For example, the splitting of a vertex of

FIG. 13. The solution of Eq.s34d below s1d and aboves2d, the

“critical” point k̄c. Only for k̄, k̄c si.e., q.qcd does the solution

providens1d=1 and the limit slopek̄ ssee the dashed lined.
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degree 4 produces,sid with probability 1/8, a pair of vertices
of degrees 0 and 4,sii d with probability 4/8, a pair of verti-
ces of degrees 1 and 3, andsiii d with probability 3/8, a pair
of vertices of degrees 2 and 2. One can easily write down the
probability of resulting configurations for any degree of the
splitting vertex. This allows us to find the probability that a
vertex of degreek will emerge due to the splitting of a vertex
of degreeq. Finally, instead, e.g., of the contributiondk,1
+Psk−1,td−Psk,td due to the process of random attachment
of a vertex, we have the following terms for the splitting
processes:

o
q=0

1

2q−1Sq

k
DPsq,td − Psk,td. s41d

Note that actually only termsqùk are nonzero in this sum.
In a Z-transformed form, this is

2nS1 + z

2
,tD − nsz,td. s42d

In splitting processs2d of Sec. II F, an emerging pair of
vertices is interconnected by an extra edge. This leads, in-
stead of the contribution of the forms41d, to the following
terms:

o
q=0

1

2q−1S q

k − 1
DPsq,td − Psk,td, s43d

where only termsqùk−1 are nonzero in this sum. In a
Z-transformed form, Eq.s43d looks as

2znS1 + z

2
,tD − nsz,td. s44d

Formulass41d–s44d may be used to modify any of the
evolution equations in the preceding sections. The resulting
equations, in aZ-transformed form, will be nonlocal due to
the nfs1+zd /2g term. We do not analyze these functional
equations in the present paper.

IV. DISCUSSION AND SUMMARY

Several remarks are necessary. We have studied a repre-
sentative set of models allowing an analytical solution if no
strong correlations are present. For the sake of simplicity and
brevity, we considered only models generating stationarysat
least in some range of degreesd degree distributions. We have
indicated that we had to ignore degree-degree correlations in
one of our networks and have demonstrated that this neglect
created some problems. This has indicated that these corre-
lations are important. In addition, we ignored multiple con-
nections and loops of length 1, which, in principle, emerge
during the evolution of these networks.

The effect of multiple connections and loops of length 1
in related network models was discussed in Ref.f26g. Sev-
eral features of the network structure depend on the presence
sor absenced of these configurations of edges. In particular,
the position of a size-dependent cutoff of the degree distri-
bution may change. The number of vertices attracting the
condensate of edges may also change. We did not considered

these detailsscutoffs, the precise number of vertices attract-
ing the condensate, etc.d. So the strict accounting for mul-
tiple connections and 1-loops should not essentially change
the conclusions of this paper.

One should emphasize the difference of the condensation
transitions considered in this work from those which were
observed earlier in networks. We have shown that in net-
works C and D, scale-free degree distributions are realized
both in the normal and in the condensation phases. In con-
trast, in equilibrium networks, a scale-free degree distribu-
tion exists only in the condensation phase, and a degree dis-
tribution is rapidly decreasing in the normal phasef2,27g.

The merging of vertices is only one of processes in the
networks under discussion. This process reduces the number
of vertices, so other processes, increasing this number, must
be present. In this paper, as a parallel process, we used an
injection of new verticesswith subsequent attachment to ex-
isting verticesd and fragmentationssplittingd. This subject has
been analyzed in the aggregation literaturef28–30g. Also,
one can implement duplicationscopyingd or partial copying
of verticesf17,31,32g or other processes. One should note
that correlations are important in low-dimensional aggrega-
tion dynamics. In this respect we have an analogy with such
processes. In the usual aggregation theory the analysis pro-
ceeds by considering the scaling properties of the aggrega-
tion or fragmentation kernelsssee, e.g.,f25g and references
thereind. For models such as those considered in our paper
these properties are not knowna priori and in the presence
of degree correlations arise “self-consistently.”

As is natural, a uniform picture for all networks created
by aggregation processes cannot be obtained in principle.
However, the models that we have considered in the present
paper, reveal a number of basic features:

s1d The aggregation easily generates network architec-
tures where hubs play a profound role.

s2d The aggregation often leads to gelation or, in other
words, to condensation of edges in these networks. We have
found the condensation point at some mean degree value and
have traced the variation of network structure in the normal
and the condensation phases.

s3d These networks are evolving networks, and so their
structure is characterized by strong correlations, in particular,
by strong degree-degree correlations of assortative type.

These features, which we observed by using demonstrative
models, should be present in more complex networks of this
kind.
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