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Complex networks created by aggregation
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We study aggregation as a mechanism for the creation of complex networks. In this evolution process
vertices merge together, which increases a number of highly connected hubs. We study a range of complex
network architectures produced by the aggregation. Fat-té@itegarticular, scale-freedistributions of con-
nections are obtained for both networks with a finite number of vertices and growing networks. We observe a
strong variation of a network structure with growing density of connections and find the phase transition of the
condensation of edges. Finally, we demonstrate the importance of structural correlations in these networks.

DOI: 10.1103/PhysRevE.71.036107 PACS nuni#)er05.50:+q, 05.10--a, 05.40--a, 87.18.Sn

I. INTRODUCTION tectures by the merge of vertices. It is impossible to obtain a

Fat-tailed distributions of connections characterize theniform picture for all networks of this type. So we describe
complex architectures of many real-world netwoflis-4]. a set of typical behaviors by considering a line of basic net-
Several mechanisms may be accounted for this form of dework models, which can be studied analytically. These mod-
gree distributions of networkg¢Degree is the total number of els may be generalized in a natural way to include clustering
connections of a vertexThe most popular concepts imply and the condensation of clustering. Many other variations are
self-organizatior{5-7]. The self-organization mechanism is g|so possible.
responsible for fat-tailed distributions in a wide circle of  Aj| the models that we study in this paper generate fat-
evolving systemssee, e.g., Ref$8,9]), and not only in net-  5jjeq degree distributions. We consider both nonequilibrium

works. . . . networks with a fixed number of vertices and networks
Usually, a very particular preferential attachment version

of the self-organization mechanism is discussed, so thavhere this number grows. We use the mean degreé a
highly connected vertices preferentially attract new connechetwork as a relevant parameter. Then for scale—frge net-
tions[5-7], but there are other possibilities. In this paper, weworks, where a degree distribution is a power law with ex-

consider agglomeration as a competing possibility. It isponenty, the variation of network architectures withis
known that_ aggrgganon processes effectively generatgsSentially characterized by thé?) dependence.
power-law distributiongsee, e.g., Re{.10] for an example; In most of the networks in this paper, the evolution is due

see also the recent paper Rgf1]). In networks, the corre- ) ! . .
sponding process is the merging of vertices. By this mechal® WO parallel processe&) the merging of vertices andi)

nism, vertices accumulate their connectidagglomeration random attachment of new vertices. However, we also dis-

of edges. This increases a number of highly connected hubé:us_s.networks, whe_re the secpnd channel of the evquti_on is
and so gives a chance to arrive at a fat-tailed degree distrgPlitting (fragmentation of vertices. The range of scenarios
bution. is wide, but in most of them we find a phase with the con-

Evidently, the merging of vertices should take place indensate of edgeén other words, gelation Above some
cellular networkgmerging proteinsas well as in many other critical valuek, of the mean degree, a finite fraction of edges
real-world networks. For example, in various networks ofis attached to a vanishing fraction of vertices or to a single
economic relations, merging and splitting of enterprises argertex. This condensation, unlike the situation described in
basic elements of the evolution. The same is valid for netRef.[14], occurs in the homogeneous networks. In the “nor-
works of software components, electronic circuits, networksmal phase,” a degree distribution is of a power-law form
of relations between social groups, organizations, institup(k)«k=>. Moreover, we observe that, rather unexpectedly,
tions, and parties, networks of subjects, networks of notionsgven in the condensation phase, normal vertices have a scale-
etc. Simple evolving networks with merging vertices havefree degree distribution.

recently been simulatdd 2], and the generation of fat-tailed The resulting picture may be complicated by the presence
degree distributions has been successfully demonstrategf correlations, which is typical for nonequilibrium net-
(For a similar process in bipartite graphs, see RE3].) works. We demonstrate the importance of degree-degree cor-
In the present paper we provide a comprehensive descrigelations in the most succinct of these network models. The
tion of the process of the creation of complex network archipaper is organized as is follows. In Sec. Il, we describe the
models and present in detail our results for each of them. The
complete final information can be obtained from this section.
*Electronic address: Mikko.Alava@hut.fi In Sec. lll we present the details of our analytical calcula-
"Electronic address: sdorogov@fis.ua.pt tions.
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FIG. 1. Processes creating netw@k The labels indicate that
merging vertices are selected at randont.” ‘indicates an added
vertex.q=1 is a relative rate of the addition process.

FIG. 3. Processes creating netw@&kHere,m=2; i.e., each new
vertex has two connections.

Il. MODELS AND RESULTS time. This ensures the growt_h of the mean degree with time.
Any condensation of edges is absent.
In this section we describe basic models of networks Note that we assume that this network is sparse. In prin-
evolving due to aggregation processes and present our reiple, we allow multiple connections and 1-looptoops of
sults. For sake of brevity we consider only undirectedlength 1. However, we believe that in the sparse network

networks—i.e., networks with undirected edges. regime, they are not important if we are not interested in the
position of the cutoff of the degree distribution.
A. Network O This network was simulated earli¢t2]. Our analytical

This is the simplest model. The evolution starts from aresults confirm the observations in REL2]; see also Ref.
given configuration of vertices and connecting edges. Loophl1].
of length one are allowed. At each time stgpe Fig. 1, the

following occurs: C. Network B
(1) g=1 new bare vertices are added to the network. This is a growing version of model. At each time step
(2) Two randomly chosen vertices merge. (see Fig. 3 the following occurs:

Obviously, the final state of the network is a set of bare (1) q>1 new vertices are added to the network. Each of
vertices plus a single vertex with all the edgestually,  these vertices is attached morandomly chosen vertices by
loops of length 1attached. This is what we call the conden- y, gqges.
sate of edges. (2) Two randomly chosen vertices merge.

B. Network A The total number of vertices now growhk(t)=N(t=0)
The (large total number of vertices of this network, +(q-1t. The total degree |5K(t)=K(t=0l+2qmt So the

does not change during the evolution. Initially, there is an@verage degree approaches the finite vta@qm/(q-1).
arbitrary configuration ofN vertices connected by some The condensation of edges is absent in this model. Unlike

number of links. At each time stepee Fig. 2, the following ~ modelA, the stationary degree distribution of this growing
occurs: network is a rapidly decreasing function. If, however, the

rate of the growth is lowg—-1<1, then the power-law de-
pendence(l) is realized in the range of degrees below a
size-independent cutok<m/(q-1).

(1) A new vertex is added to the network. This vertex is
attached to a randomly chosen vertex.
(2) Two randomly chosen vertices merge.

So the result of the merging of vertices of degrkeand

K’ is a vertex of degre&=k’ +k”. The total degree of the D. Network C
network linearly grows,K(t)=K(t=0)+2t, as well as its In this growing network, at each time stégee Fig. 4, the
mean degree. The network becomes more and more denfglowing occurs:
with time. o _ (1) g>1 new vertices are added to the network. Each of
The resulting degree distributiofctually, its asymptot-  these vertices is attached torandomly chosen vertices by
ics) is of a power-law form with exponent equal to 3/2: m edges.
P(k) ~ K32, (1) (2) Simultaneously, a randomly chosen vertex merges

with its randomly chosen neighbor, and the connecting edge
The main part of the distribution is stationary, but its low- disappears.
degree part and a cutoff in the high-degree range change with

r< _1>+./—?< o —>+¢
Fe L K i

FIG. 2. Processes creating netwdk FIG. 4. Processes creating netw@km=2.
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1 One can easily understand this condensation phenom-
enon. For the evolution of the number of edges in the con-
densate, Ki,(t)=2(gm-1)Mt—that is, the “macroscopic”

1 number of edges attached to the hub—one can immediately
write the following equation:
= 05F 2
A diy _ K_[g _ ] ©
dt K[ (g-1t

Here,K(t) is the total degree of the network, and the second
factor on the right-hand side of the equation is simply the
0 : ' ; ; : mean degree, of “normal” vertices (i.e., the hub is ex-
cluded minus 2. Indeed, according to rul) of the model,

the probability that the hub will be chosen for the merging is

1 Kn/K. Each act of merging, on average, increases the number
of connections of the hub bi,—2, which explains the form

of Eq. (6). Consequently,

B B 2(gm=-1) - 2(gm-1)M B
s 051 2(gm-1)M =M a-1

(a) ki(2m)

2. (M

> One can see that this equation has a nonzero soliion
h 3 [exactly of the form(5)] only if the growth rate parametey
is less than the critical valug. given by expressiofd). Note
. that similar equations may be written for networks with split-
w 13 > 25 ting vertices(see below
“Normal vertices” (i.e., with “microscopic” numbers of
FIG. 5. The fractionM of condensed edges in netwotkas a  connections have stationary power-law degree distributions
function of thek/(2m) (a) and of the growth rate (b). Curves 1, 2, (asymptoticy both in the normal and in the condensed

and 3 correspond tm=3, 6, andx, respectively. phases. They exponent of the degree distributioR(k)
~K™7is
Rule (2) means the preferential choice: the second vertex 4km - K2 — 4m mag - 2gm+ 1
in the network is chosen with probability proportional to its y=2+————= +W >2 (8
degree. The number of vertices and the total degree grow as (k=2)(k=2m) q

N(t)=N(t=0)+(g-1)t andK(t)=K(t=0) +2(gm-1)t, respec- . . — —
tively. So the mean degree approaches the value in the phase without condensdie<k, i.e.,q>qg) and
- = ) B

—  gm-1 o Kram-dkm_ 2qm mof - 1

kgzq—l - am. @ T okm-1)  (Ma=1)(q-1)

9)

It turns out that if the network is sufficiently dense, in the condensation phase, whete k. (q<g.). Figure 6
namely, if shows how the exponent of the degree distribution varies
with the mean degree. Note that in both phases, near the

k>ke=2m(1 +y1-1fm), 3 condensation pointy— 2o |k—k| «|q=0g.
then a finite fraction of edges is condensed on a single vertex At the critical point, the degree distribution has the form
(or, maybe, on a few verticgsThis takes place when the rate 1
of the grows is low: P(k) Z Ik (10)
q<Qc=1+v1-1m. (4) Thus, this network is scale free both is the normal and in
The fraction of edges in the condensate, the condensation phases. The power-law form of the degree
distribution in the condensation phase is rather unexpected.
K2—4km+4m  2gm-¢?m-1 Let us explain this remark in more detail. A close analogy
=T = ) (5 of the problem under consideration is the emergence of the
k(k —2m) gm-1 giant connected component in a growing network, where a

— — . . phase transition with the Berezinskii-Kosterlitz-Thouless sin-
behaves a#l o« (k—kg) = (q.~q) near the condensation point g jarity takes placél5-18. In that case, the evolution equa-
(see Fig. 5. One can see that all the edges are in the congon, for the size distribution of connected components is very
densate in the limit ok— . (Note, however, that we con- similar to the evolution equation for the degree distribution
sider a sparse netwojk. in our case(see the next sectignin this analogy, the giant
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At first sight, this model is close to mod€l The numbers
of vertices and connections grow in the same way, and the
mean degree is the same, E8). The only difference is the
6L 1/, way in which the merging vertices are chosen. One can treat
3 this merging process as the transformation of random edges
- with their end vertices into single vertices.

In fact, there is an essential difference since now the
4r choice of vertices, in principle, depends on correlations be-
tween the degrees of the nearest-neighbor vertices in the net-
work. Let us compare models andD once again{i) The
5 | , evolution of modelC produces degree-degree correlations
2 4 6 8 but is not governed directly by thenii) The evolution of
kl/(2m), q model D depends on the degree-degree correlations and, in
its turn, produces these correlations.

FIG. 6. They exponent of the degree distribution of netw@k Strict calculations taking into account degree-degree cor-
as a function ofk/(2m) andg. Curves 1, 2, and 3 correspond to relations should be rather cumbersome. So we applied a sim-
m=3, 6, and=, respectively. Note that the dependencekti@m)  Plifying ansatz: we assumed that correlations may be ne-
andq are identical, but the ranges of the normal and condensatiogjlected.

phases are inversédee expression®) and(9)]. The condensation It turns out that with this assumption, equations for the
takes place fork/(2m) >k./(2m)=1+\1-1/m and g<q.=1 degree distribution have a reasonable solution only if the
+V1-1/m. mean degree of the network is below some value:

?<E: 2.204n-0.1115 +O(1/m), (11

connected component is analogous to the condensate of

edges attached to a vertex, and the size distribution of finiter, equivalently,q>q.=10.815-4.446i. In this region,

connected components is analogous to the degree distribour calculations provide a power-law degree distribution.

tion in our case. The point is that the size distribution of The y exponent of this distribution approaches infinity at the

connected components was found to be rapidly decreasing ifinimal possible mean degreeni.e., q— =) and neark,

the phase with the giant compondeee Ref[16]), while in  pehaves as

contrast, in the present situation, the degree distribution is —

scale free in the phase with the condensate. y=3~Vk.—k~\g-qc (12
Referencgd 12] was mainly devoted to the simulation of _

the “static” version of quite similar networks without mul- (see Fig. 8 This is in sharp contrast to the behavig(k)

tiple connections and loops of length M=const, with a near the critical point of networkC (see Fig. . Note the

growing (but still relatively low number of connections. value 3 of exponeny at k=k..

Scale-free degree distributions with exponents exceeding 2, ppgyve E with our assumption that the correlations are

without any condensation, were reported. We do not consideljysent the only solution was found to be pathological. This

precisely'thifs si.tuation here, since we focus on stgtionar roves the importance of the correlations in this network,
degree distributions. These take place in the growing net; - may be especially important in the condensation

work. phase.
For studying these degree-degree correlations, we resort
E. Network D to numerical simulations following the rules of mod®| The
At each time stefisee Fig. J, the following occurs: degree distributions of the resulting networks are shown in

ig. 9. Power-law-like degree distributions were observed
oth in the condensation phase and in the normal one. Fitting
has given values of the exponent slightly above 3 at the
studied values of the parametgr We obtained the depen-
"Yence of the mean degree of the nearest neighbors of a vertex

on the_degreck of this vertexk, (k). Of particular note here
L is thatk,,(k) has to be computed with care: loops of length 1
P
r

(1) g>1 new vertices are added to the network. Each otg
these vertices is attached torandomly chosen vertices by
m edges.

(2) Simultaneously, the end vertices of a randomly chose
edge merge together, and this edge disappears.

q are not to be considered for the vertex whose nearest neigh-
r -+ bors are under study. However, we take into account the
nearest neighbors with 1-loops. This may be especially im-

portant in the condensation phase. The obtained dependences

r
r
random 1 %< kan(k) are shown in Fig. 10. The main conclusions are as

edge follows:

(1) The network is correlated, and the degree-degree cor-
FIG. 7. Processes creating netwddk m=2. relations are strong; the correlations are of assortative type.
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FIG. 8. They exponent of the degree distribution of netwdyk

as a function o?/(Zm) (a) andq (b). Curves 1, 2, and 3 correspond
to m=3, 6, and, respectively. The solid lines are obtained by
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(4) The observed values of thgexponent of the degree
distribution are bounded from below.

The assortative type of degree-degree correlations which
we observe is not surprising. Indeed, if we remove the merg-
ing of vertices from this evolution process, we obtain a
growing network with random attachment of new vertices,
which has assortative degree-degree correlations; see Refs.
[2,19,20.

F. Splitting vertices

Instead of the process of the random attachment of new
vertices in model#A—C, one can introduce another channel
of evolution—splitting (fragmentation of vertices. In this
paper we only touch upon two possibilitiesee Fig. 1L

(1) Arandomly chosen vertex of degr&esplits into a pair
of unconnected vertices of degrdéstk”=k in such a way
that all possible resulting configurations are realized with
equal probabilities.

(2) Arandomly chosen vertex of degrkesplits into a pair
of vertices of degreek’+k"=k+2, connected by an edge.
Again, we assume that all possible resulting configurations
occur with equal probabilities.

The number of these splittings per time step, in principle,
may not be equal to 1.

Ill. DERIVATIONS

neglecting degree-degree correlations. The dashed lines qualita- In this section we describe details of our calculations. We

tively show the dependences that we suggest are valid for the COise an analytical technique similar to that for aggregation
related network. In the condensation phase, the expopdaes not

change withk and g, and is close to 3.

processes in more traditional systefi&d,22 (for various
aspects of the aggregation processes, see, e.g.,
[10,23-25).

Refs.

(2) The correlations are present both in the phase with the

condensate and without it. Figure 10 demonstrates a nonmo-

notonous dependence kf,(k) on q.

(3) The condensation phase transition takes place ajertices of degred in the networkA at timet has the fol-
higher values of the mean degree thargiven by Eq.(11).

le+06

A. Network A

The evolution equation for the average numglék,t) of

lowing form:

T T TTrmm

10000

N(k)

100

—

10

100
k

QRN

|
Py
NN @
L1

. FIG. 9. The average number of
vertices of degred in simulated
network D for q=5,7,12 andm
=3. P(k)=N(k)/N. The valuesq
=5 andg=7 imply the presence of
the condensate. The simulated
networks contain up to 70
vertices.

L1
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800 FIG. 10. The dependence of

the mean degree of the nearest
neighbors of a vertex on the de-

gree k of this vertex, kyn(k), in

simulated network D for q

=5,7,12 andn=3. The simulated
networks contain up to 0
vertices.

k, (k)
[=2)
3

400

200

0 100 200
k
N(k,t+1) = N(k,t) + 81 + %ﬁ(k— 10 - %ﬁ(k.t) % = d+ Pk= 1.0 =Pk
+ (1>2 S ONK L HNK - %ﬁ(k,t). ' k’Ek”—k PleoRIeDTERKD Y

K’ +K"=k
(13) (as is usual, asymptotically long times are considerad-
suming a stationary form of the degree distributi@xcept
of a time-dependent cutoff and of, maybe, a low-degree part

Here the average is over the statistical ensentdleandom  ©f the distribution, we arrive at a stationary equation. The
network is a statistical ensemble: a set of configurations witfiransform of the degree distributi¢a generating functioris
their statistical weight$.Three first terms on the right-hand
side of Eq.(13) describe the process of the addition of a new n(z) = Z‘E)zkp(k)_ (15
vertex and the attachment to a randomly chosen vertex. The -
two last terms describe the merging of a pair of randomlySo in aZ-transformed form, we have
selected vertices. The factor of 2 in the last term is due to the )
fact that two vertices merge together. 0=n%2) +(z-3)n(2) +z. (16)
No_te thaft we assume that our networks are large. S_o ®he solution of this equation is
merging pair almost surely has no common nearest neigh-
bors, and we can ignore the emergence of multiple connec-
tions during merging if we do not interested in the cutoff
region of the degree distribution.
The total number of vertices in the networK, is con-  This givesn(1)=1, as it should be witl,P(k)=1. This root
stant, so the evolution equation for the degree distributiorof the equation is chosen since it must be @ (0)=P(1)

n@=113-2-\@-21-2). 17

P(k,t)=N(k,t)/N has the form < 1. The equation gives’(0)=P(1)=1/3.
Nearz=1,
%< (@) % < n(z) = (analytical terms+ (1 —2)%?27%. (18)
r This corresponds to the degree distributitk) ~ k32, Eq.
b (1), since the form of & transform near=1 and the asymp-
%< L H totics of its original are related to each other in the following
r way:

FIG. 11. Splitting processe@xamplek (a) splitting of a ran-  N(Z~ 1) = (analytical terms+ (1 -2)""' — P(k> 1) ~ k7,
domly chosen vertex into a pair of unconnected vertices @nd (19
splitting of a random vertex into a pair of connected vertices. In the
simplest situation, each of possible resulting configurations occurf 7y is noninteger. The resulil8) is rather typical not only
with equal probability. for aggregation processes but also for general nonequilib-
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rium networks, where the mean degree linearly grows withces. Rule(2) of the model(see Sec. Il D ensures that the

time (see the discussion in Rd2)). second vertex for merginga random nearest neighbor of a
Initially, we have assumed that the resulting degree distrirandom vertexis chosen with the probability proportional to

bution is stationary. In principle, one can make a more genthe degree of this vertex. This is true irrespective of the

eral assumption—e.g., for brevitip(k,t) =t?f(k), whereais  presence of correlations in the network.

some exponent anflk) is an arbitrary function ok. After For the stationary degree distribution, irzgransformed

the substitution of this form into Eq14) andZ transforma-  form, we have

tion, we find that the solution(z,t) depends only oz—i.e.,

. . 1 1
indeed stationary. 0=qZ"+ Zz—J(z)zn’ (2) - =z (2) + qmzn2) - q(m+ 1)n(2).
k k
B. Network B (24)
The evolution equation for the mean number of vertices(Note that the Z transform of the convolution with
of degreek in networkB is S s sP(KDKP(KY) is
N(k,t+ 1) = N(k,t) + + ——N(k-1,t) - —N(k,t 1 ,
(ot D =N * i + [y Nk= 1.9 = 5y NkeD >{n@2r(2) - PO)0P(0) - AP(O)1P(1) + P()OP(O)]}.
+ zi > NKHONK ) - iﬁ(k,t), We haveP(0)=0, so that this expression simplifig&ecall
N (t) K +K"=k N(t) that
(20 K2
Here, the number of verticed\(t)=(q-1)t. The evolution q=I—2 >1. (29
equation for the degree distributio®(k,t)=N(k,t)/[(q m
-1Dt] is Equation(24) is the Abel equation of the second kind. In a
ical f it look
(@- DR + P = 08m+ qMRK= 1) —qmBtkt) oo OO 88
+ E P(k/,t) P(k”,t) [ZZ - n(Z)]n,(Z) = kq{Zm+1 + [I'T'IZ2 - (m+ 1)Z]n(Z)} (26)
K’ +K"=k

For the detailed analysis of a very similar equation for the
- 2P(k,t). (21 size distribution of finite connected components in growing

) . o networks, see Ref16]. Note, however, that in general terms,
Assuming a stationary degree distribution, id tansformed Eq. (26) has a different solution than that in RELE].

form, this is If P(k=0)=0, Eq.(26) implies

0=qZ"+n*2) +qmzi2) -[q(m+1) + 1]n(z) (22 Kk=-2)
[compare with Eq(16) for g=1]. The solution of Eq(22) is n(z~0) = = — sz. (27)
analytical atz=1, so that the degree distribution is a rapidly ki(m+1) - k(2m+ 1) - 2m

decreasing function. Suppose, however, that the gate

close to 1. Then deviations from nonanalytical behavi® the solutionn(z) of Eq. (26) with the initial condition (27)

: T2 .
of n(2) are obgervgd only in the range 2= (q~1) /2m. This nearz=0. One can check that this solution arrives at Z at
results in a size-independent cutdff,~m/(q-1)° of the  _;. n(1)=1

power-law dependende(k) ~ k3. : '

For obtaining a largé-asymptotics oP(k), one must find

The linearization of Eq(26) nearz=1 shows thain(z)
linearly approacheg=1, with a derivativen’(1), which sat-

C. Network C isfies the equation
The evolution equation for the mean number of vertices —
of degreek in this network is of the form [-2+n(D)]n’(1) = iﬁk— 2)[_ om+n'(1)].  (29)
k-2m
N(k,t+ 1) =N(k,t) + +——N(k-1,t) = —N(kt ) ) )
( ) =NKD +adicm N(t) ( ) N(t) (k) The meaning of’(1) is the mean degree of a vertex with
1 o o degreek=0(N)—that is, the mean degree of a “normal” ver-
+ p 2 N(k",t)K"N(K",t) tex. The solution of this square equation is

Nz(t)k K +K'=k+2 _ .
k% - 4m— |- k2 + 4km - 4m|

- L Nkt - —* Nk, (23) n'(1) = (29

N(t) N(DK 2(k - 2m)

Note that while deriving this equation, we did not assume thélhat is, there is a poiHTC (and the corresponding valug),
absence of correlations between the nearest-neighbor vergatisfying the equation
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12~ 4km+4m=0, (30)

where the expression far' (1) changes its form?C and q.
are given by Eqgs(3) and(4), respectively.

At ?<E, the slopen’(1) equals the mean degree of the
network,E That is, all the vertices of the network are “nor-
mal.” Aboveﬁ (i.e., atq<qy), n’(1)=2qm=2m(?—2)/(?
-2m) <k. This means that a fractiol :[K—n’(l)]/?[see
expression(5)] is in the condensed state. The variation of the

solution of Eq.(26) with k is shown schematically in Fig. 12.
The large-degree asymptotic behavior of the degree dis-
tribution of “normal vertices” is obtained by analyzing the
form of the solution of Eq(26) nearz=1. We pass to new
variablesz=1-¢, n(z2=1-n'(1)é+v(é) in Eq. (26). The in-
spection of the resulting equation shows thakatk., the
contributionv (&) is a power-law function at smal, v(§)
o« £2 where exponerd is greater than 1. The substitution of _ _
this form into the equation allows us to obtanUsing the  In k>2(k?~4k+4m)/|k?~4km+4m. (i) At smaller degrees,
correspondencél9) results in the formulag8) and (9) for  the critical dependencgl0) is present.
the y exponent of the degree distribution in the normal and
condensed phases, respectiviedge Fig. 6.
In the critical pointk=Kk,, the solution of the equation for ) _ o
v(¢€) has a more complex form with an additional logarithmic ~ Merging vertices in this model are the ends of randomly

factor (for more details, see RdfL6]). The resulting solution selected edges_. In this case, for the strict de;cription o_f _the
network evolution one has to solve an equation for a joint

FIG. 12. The schematic view of the solution of Eg6) in the
normal(1) and co_ndensatio(ﬁ) phases. The dashed lines show the

corresponding 1k(1-z) dependences. In the condensation phase,
the slope of the solution a=1 is lower thark.

D. Network D

n(z~1) is
( ) distribution P(k’ k") of the degrees of the nearest neighbor
_ 1-7 vertices. This is an essentially more hard problem than the
n(2) = 1-kJ(1-2) +constx In[constx (1-2)]° analysis of Eqs(14), (21), and (24) for P(k) or N(k) in

previous sections. Instead of making these cumbersome cal-

(31) culations, we ignore the possibility of the degree-degree cor-
The asymptotics of the original of thi transform is relations and chegk vv_heth(_ar thls ansatz leads to rea}sonable
results or not. This simplification allows us to consider a
dz more simple evolution equation.
P(k) :3€ Tz‘k‘lP(k) Assuming the absence of correlations between degrees of
c <m the nearest neighbors of netwaikresults in the following
3g dz 1-7 - rate equation:
— Z_ -
2 In[constX (1 -z — — m— m—
o 2 In] (12 N(k,t+l)=N(k,t)+q5km+q—N(k—1,t)—q—N(k,t)
ds s NG N()
=P —— 1 - -
o 2miins F—— 3 KNK HKNK'D
f * ds ( 1 1 ) « N (OK? i -er=kr2
= —0g| — - —— |e~
27i + 2 k —
o 2mi \Ins Ins+27i — 22— Nk, (33)
Cds 2m g 1 32 N(Hk
o 2mi In’s K2 In?k’ For brevity, we consider only the case>2 (some of the

resulting formulas may be different in the casesrofl, 2).

Here the contouc is around 0, within the unit circle. The So for a stationary degree distribution, we have, in a
contourc is deformed to the contow’, which comes from  Z-transformed form,
- to +0 along the cut of In and then returns te by the
other shore of the cut. This deformation is madg to ensure the 0=qZ"+ i_[zn’(z)]z _ gzn’(z) +qmzn2)
decrease of the exponent. Thus, we have arrived at the de- K2
gree distribution(10) at the critical point.

One can show that &+ k;, in large networks, the degree [g(m+1) =1In(). (34)
distribution has two regiongi) The power-law dependence This is a nonlinear differential equation of the first order. It
with exponent$8) and(9) is realized in the range of degrees crucially differs from the corresponding Eq24) for the
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k(k +km- 4am)
C=———

4k - 2m)

X {1 - \/1 - 2(?‘ 2)(E— 2_m)m(2?+ m-1) |
(k+ km— 4m)?

(37
(One can check that only the sign “minus” at the square root
leads to reasonable final values of the exponent of the degree
distribution) C is real only if k<k., wherek; is the point

where the square root in EqR37) is zero.k. is exactly the
point above which the solution(z) is not reasonabléi.e.,

wheren(1) >1]. The resulting expression fd?c is cumber-
some but fom>1 we have

FIG. 13. The solution of Eq(34) below (1) and above?2), the
“critical” point FC Only for f<f€ (i.e., g>q) does the solution
providen(1)=1 and the limit sIopéT(see the dashed line

=Tt V113 3-11A113

model C and provides a different set of behaviors. 8 m 7+ \,,r13 ’ (38)
Near z=0, the solution of Eq(34) is of the following _
form: which leads to formuld11).

So if k<k,, we can substitute(£)=C&+w(é) into the

k(—k— 2) equation forv(£). An inspection of the resulting equation for

nz~0) = — — (35)  W(§) shows thatv(§) = D&, where exponerh>2. One can
2k(m-1) - 4m? + k’m easily findb,
. o N K(m-1)
This asymptotics is used as a boundary condition for Eg. b=——, (39
(34). (k—=2m)(2C-K)

For a numerical analysis, the following form of Eg4) is

more convenient: with C given by Eq.(37), and by using the correspondence

rule (19) we readily obtain the exponent of the degree distri-

bution:
1 -
n'(2) =kz-k{ Z2- ——{k(k-2)Z" y=3
k-2m — —
B B o 2\/1_2(k—2)(k—2m)m(2k+ m-1)
+[(k=2)mz-k+2m|n(2)} ; . (36) (?+fm— 4m)?
+ — — — — .
Km-1 \/1 (k= 2)(k- 2mm(2k+ m~ 1)
Note that out of the two solutions of E¢34) only the one K+ km- 4m “ (k + km = 4m)?

with a negative sign is reasonable. One can check that at the

boundaryz=1, if n(1)=1, then Eq.34) givesn’(1) :Kand, o

vice versa, ifn’(1)=k, then Eq.(34) givesn(1)=1. On the  This ¥(k) dependence is shown in Fig. 8.
other hand, the numerical solution of E§6) shows that the The analytical results for netwoi® were obtained in the
solution withn(1)=1 exists only at sufficiently lovk. Above ~ framework of the simplifying ansatz: we ignored degree-

. degree correlations. The simulation of this network has
some valuek, the solutions of Eq(34) or Eq. (3@ turn out  ghown that the correlations are significésee Sec. Il Eand
to be greater than 1 at sonze n(1)>1 (see Fig. 13, and

! : A . ) that our analytical predictions for the normal phase must be
compare with Fig. 12 But this is impossible, since surely corrected. Furthermore, the simulations have allowed us to
2 P(k=1. This contradiction indicates that our assumptiongescripe the structure of the network in the condensation

does not hold at least fd?>?c. phase.
Let us study the analytical structure of the solutigm), z

near 1, fork<<k.. As in Sec. Ill C, introducing the new vari- E. Splitting vertices

ablesz=1-¢ andn(z)=1-ké+v(€), we pass to an equation  Here we only show the contributions due to splitting pro-
for v(§). It turns out, however, that unlike Sec. Il C, this cesses to evolution equations for the degree distribution.
equation has no solution(é) ~ & with exponent kxa<2.  Splitting procesg1) of Sec. Il F generates with equal prob-
So we have to search for the solution in the analytical formabilities all possible configurations of two unconnected ver-
v(€)=C#&. Substituting this form into the equation gives tices[see Fig. 1(a)]. For example, the splitting of a vertex of

(40)
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degree 4 produce§, with probability 1/8, a pair of vertices these detailgcutoffs, the precise number of vertices attract-
of degrees 0 and 4iji) with probability 4/8, a pair of verti- ing the condensate, etcSo the strict accounting for mul-
ces of degrees 1 and 3, afiil) with probability 3/8, a pair tiple connections and 1-loops should not essentially change
of vertices of degrees 2 and 2. One can easily write down théhe conclusions of this paper.

probability of resulting configurations for any degree of the One should emphasize the difference of the condensation
splitting vertex. This allows us to find the probability that a transitions considered in this work from those which were
vertex of degred will emerge due to the splitting of a vertex observed earlier in networks. We have shown that in net-
of degreeq. Finally, instead, e.g., of the contributiofy;  works C and D, scale-free degree distributions are realized
+P(k—-1,t)-P(k,t) due to the process of random attachmentboth in the normal and in the condensation phases. In con-
of a vertex, we have the following terms for the splitting trast, in equilibrium networks, a scale-free degree distribu-

processes: tion exists only in the condensation phase, and a degree dis-
1 tribution is rapidly decreasing in the normal ph&2e27).
q) The merging of vertices is only one of processes in the
—{ " |P(a,t) - P(k.1). 41 ! verti onty P
qgo 2q‘1(k @ - PkY 4D networks under discussion. This process reduces the number

o of vertices, so other processes, increasing this number, must

In a Z-transformed form, this is injection of new verticegwith subsequent attachment to ex-
1+7 isting vertice$ and fragmentatiofsplitting). This subject has
2n<7,t> -n(zt). (42 been analyzed in the aggregation literat{i28—30. Also,

one can implement duplicatiofgopying or partial copying
In splitting procesg2) of Sec. Il F, an emerging pair of Of vertices[17,31,33 or other processes. One should note
vertices is interconnected by an extra edge. This leads, irfhat correlations are important in low-dimensional aggrega-

stead of the contribution of the forif#1), to the following  tion dynamics. In this respect we have an analogy with such
terms: processes. In the usual aggregation theory the analysis pro-

ceeds by considering the scaling properties of the aggrega-
1(q tion or fragmentation kernelsee, e.g.[25] and references
2 2q—1(k_ 1>P(q,t) Pk, (43) therein. For models such as those considered in our paper
_ _ these properties are not knovenpriori and in the presence
where only termsg=k-1 are nonzero in this sum. In a of degree correlations arise “self-consistently.”

a=0

Z-transformed form, Eq(43) looks as As is natural, a uniform picture for all networks created
147 by aggregation processes cannot be obtained in principle.
22n<—,t> -n(zt). (44) However, the models that we have considered in the present
2 paper, reveal a number of basic features:

Formulas(41)—(44) may be used to modify any of the (1) The aggregation easily generates network architec-
evolution equations in the preceding sections. The resultintures where hubs play a profound role.
equations, in &-transformed form, will be nonlocal due to (2) The aggregation often leads to gelation or, in other
the n[(1+2)/2] term. We do not analyze these functional words, to condensation of edges in these networks. We have

equations in the present paper. found the condensation point at some mean degree value and
have traced the variation of network structure in the normal
IV. DISCUSSION AND SUMMARY and the condensation phases.

(3) These networks are evolving networks, and so their

Several remarks are necessary. We have studied a reprstructure is characterized by strong correlations, in particular,
sentative set of models allowing an analytical solution if noby strong degree-degree correlations of assortative type.
strong correlations are present. For the sake of simplicity an
brevity, we considered only models generating statioriatry
least in some range of degreeegree distributions. We have
indicated that we had to ignore degree-degree correlations in
one of our networks and have demonstrated that this neglect
created some problems. This has indicated that these corre-
lations are important. In addition, we ignored multiple con- M.J.A. is grateful to the Center of Excellence program of
nections and loops of length 1, which, in principle, emergethe Academy of Finland for support. S.D. would like to ac-
during the evolution of these networks. knowledge the hospitality of the Helsinki University of Tech-

The effect of multiple connections and loops of length 1nology. A part of the work was made when one of the authors
in related network models was discussed in R26]. Sev- (S.D) attended the Exystence Thematic Institute on Net-
eral features of the network structure depend on the preseneeorks and RiskgCollegium Budapest S.D. was partially
(or absenceof these configurations of edges. In particular, supported by Project Nos. POCTI/FAT/46241/2002 and
the position of a size-dependent cutoff of the degree distriPOCTI/MAT/46176/2002. S.D. thanks Kim Sneppen for a
bution may change. The number of vertices attracting theiseful discussion in Budapest, and M.J.A. thanks Supriya
condensate of edges may also change. We did not consider&dishnamurty for useful comments.

Cf'hese features, which we observed by using demonstrative
models, should be present in more complex networks of this
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